Tyrannosaurus Rex

From DinoWiki by Dino-Club.com
Jump to: navigation, search

Tyrannosaurus is a genus of coelurosaurian theropod dinosaur. The species Tyrannosaurus rex (rex meaning "king" in Latin), often called T. rex or colloquially T-Rex, is one of the most well-represented of the large theropods. Tyrannosaurus lived throughout what is now western North America, on what was then an island continent known as Laramidia. Tyrannosaurus had a much wider range than other tyrannosaurids. Fossils are found in a variety of rock formations dating to the Maastrichtian age of the upper Cretaceous Period, 68 to 66 million years ago. It was the last known member of the tyrannosaurids, and among the last non-avian dinosaurs to exist before the Cretaceous–Paleogene extinction event.

Like other tyrannosaurids, Tyrannosaurus was a bipedal carnivore with a massive skull balanced by a long, heavy tail. Relative to its large and powerful hindlimbs, Tyrannosaurus forelimbs were short but unusually powerful for their size and had two clawed digits. The most complete specimen measures up to 12.3 m (40 ft) in length, up to 3.66 meters (12 ft) tall at the hips, and according to most modern estimates 8.4 metric tons (9.3 short tons) to 14 metric tons (15.4 short tons) in weight. Although other theropods rivaled or exceeded Tyrannosaurus rex in size, it is still among the largest known land predators and is estimated to have exerted the largest bite force among all terrestrial animals. By far the largest carnivore in its environment, Tyrannosaurus rex was most likely an apex predator, preying upon hadrosaurs, armored herbivores like ceratopsians and ankylosaurs, and possibly sauropods. Some experts have suggested the dinosaur was primarily a scavenger. The question of whether Tyrannosaurus was an apex predator or a pure scavenger was among the longest debates in paleontology. Most paleontologists today accept that Tyrannosaurus was both an active predator and a scavenger.

More than 50 specimens of Tyrannosaurus rex have been identified, some of which are nearly complete skeletons. Soft tissue and proteins have been reported in at least one of these specimens. The abundance of fossil material has allowed significant research into many aspects of its biology, including its life history and biomechanics. The feeding habits, physiology and potential speed of Tyrannosaurus rex are a few subjects of debate. Its taxonomy is also controversial, as some scientists consider Tarbosaurus bataar from Asia to be a second Tyrannosaurus species while others maintain Tarbosaurus is a separate genus. Several other genera of North American tyrannosaurids have also been synonymized with Tyrannosaurus.

As the archetypal theropod, Tyrannosaurus is one of the best-known dinosaurs since the 20th century, and has been featured in film, advertising, postal stamps, and many other media.


Tyrannosaurus rex was one of the largest land carnivores of all time; the largest complete specimen, located at the Field Museum of Natural History under the name FMNH PR2081 and nicknamed Sue, measured 12.3 meters (40 ft) long,[2] and was 3.66 meters (12 ft) tall at the hips, and according to the most recent studies estimated to have weighed between 8.4 metric tons (9.3 short tons) to 14 metric tons (15.4 short tons) when alive.Not every adult Tyrannosaurus specimen recovered is as big. Historically average adult mass estimates have varied widely over the years, from as low as 4.5 metric tons (5.0 short tons),[5][6] to more than 7.2 metric tons (7.9 short tons),[7] with most modern estimates ranging between 5.4 metric tons (6.0 short tons) and 8.0 metric tons (8.8 short tons).

Restoration showing scaly skin with sparse feathering The neck of Tyrannosaurus rex formed a natural S-shaped curve like that of other theropods, but was short and muscular to support the massive head. The forelimbs had only two clawed fingers,[12] along with an additional small metacarpal representing the remnant of a third digit.[13] In contrast the hind limbs were among the longest in proportion to body size of any theropod. The tail was heavy and long, sometimes containing over forty vertebrae, in order to balance the massive head and torso and to provide space for massive locomotor muscles. To compensate for the immense bulk of the animal, many bones throughout the skeleton were hollowed, reducing its weight without significant loss of strength.

Profile view of a skull (AMNH 5027) The largest known Tyrannosaurus rex skull measures up to 1.52 meters (5 ft) in length. Large fenestrae (openings) in the skull reduced weight, as in all carnivorous theropods. In other respects Tyrannosaurus's skull was significantly different from those of large non-tyrannosaurid theropods. It was extremely wide at the rear but had a narrow snout, allowing unusually good binocular vision. The skull bones were massive and the nasals and some other bones were fused, preventing movement between them; but many were pneumatized (contained a "honeycomb" of tiny air spaces) and thus lighter. These and other skull-strengthening features are part of the tyrannosaurid trend towards an increasingly powerful bite, which easily surpassed that of all non-tyrannosaurids. The tip of the upper jaw was U-shaped (most non-tyrannosauroid carnivores had V-shaped upper jaws), which increased the amount of tissue and bone a tyrannosaur could rip out with one bite, although it also increased the stresses on the front teeth.

The teeth of Tyrannosaurus rex displayed marked heterodonty (differences in shape) The premaxillary teeth at the front of the upper jaw were closely packed, D-shaped in cross-section, had reinforcing ridges on the rear surface, were incisiform (their tips were chisel-like blades) and curved backwards. The D-shaped cross-section, reinforcing ridges and backwards curve reduced the risk that the teeth would snap when Tyrannosaurus bit and pulled. The remaining teeth were robust, like "lethal bananas" rather than daggers, more widely spaced and also had reinforcing ridges.[21] Those in the upper jaw were larger than those in all but the rear of the lower jaw. The largest found so far is estimated to have been 30.5 centimeters (12 in) long including the root when the animal was alive, making it the largest tooth of any carnivorous dinosaur yet found.

              Skin and possible feathers

Skin and possible feathers Main article: Feathered dinosaur

Head model showing "traditional" naked skin and lipless jaws, Natural History Museum of Vienna The discovery of feathered dinosaurs led to debates if, and to what extent, Tyrannosaurus might have been feathered.[23] Filamentous structures, which are commonly recognized as the precursors of feathers, have been reported in the small-bodied, basal tyrannosauroid Dilong paradoxus from the Early Cretaceous Yixian Formation of China in 2004.[24] Because integumentary impressions of larger tyrannosauroids known at that time showed evidence of scales, the researchers who studied Dilong speculated that insulating feathers might have been lost by larger species due to their smaller surface-to-volume ratio.[24] The subsequent discovery of the giant species Yutyrannus huali, also from the Yixian, showed that even some large tyrannosauroids had feathers covering much of their bodies, casting doubt on the hypothesis that they were a size-related feature.[25] A 2017 study reviewed known skin impressions of tyrannosaurids, including those of a Tyrannosaurus specimen nicknamed "Wyrex" (BHI 6230) which preserves patches of mosaic scales on the tail, hip, and neck.[26] The study concluded that feather covering of large tyrannosaurids such as Tyrannosaurus was, if present, limited to the upper side of the trunk.

Full-size model in Poland, depicting Tyrannosaurus with both feathers and scales, as well as lipped jaws A conference abstract published in 2016 posited that theropods such as Tyrannosaurus had their upper teeth covered in lips, instead of bare teeth as seen in crocodilians. This was based on the presence of enamel, which according to the study needs to remain hydrated, an issue not faced by aquatic animals like crocodilians.[27] A 2017 study, however, found that tyrannosaurids had large, flat scales on their snouts instead of lips.

Teeth from what is now documented as a Tyrannosaurus rex were found in 1874 by Arthur Lakes near Golden, Colorado. In the early 1890s, John Bell Hatcher collected postcranial elements in eastern Wyoming. The fossils were believed to be from a large species of Ornithomimus (O. grandis) but are now considered Tyrannosaurus rex remains.

In 1892, Edward Drinker Cope found two vertebral fragments of large dinosaur. Cope believed the fragments belonged to an "agathaumid" (ceratopsid) dinosaur, and named them Manospondylus gigas, meaning "giant porous vertebra", in reference to the numerous openings for blood vessels he found in the bone.[30] The M. gigas remains were, in 1907, identified by Hatcher as those of a theropod rather than a ceratopsid.[31]. Henry Fairfield Osborn recognized the similarity between Manospondylus gigas and Tyrannosaurus rex as early as 1917, by which time the second vertebra had been lost. Owing to the fragmentary nature of the Manospondylus vertebrae, Osborn did not synonymize the two genera, instead considering the older genus indeterminate. In June 2000, the Black Hills Institute found around 10% of a Tyrannosaurus skeleton (BHI 6248) at a site that might have been the original M. gigas locality.

          Skeleton discovery and naming

Skeletal restoration by William D. Matthew from 1905, published alongside Osborn's description paper Barnum Brown, assistant curator of the American Museum of Natural History, found the first partial skeleton of Tyrannosaurus rex in eastern Wyoming in 1900. Brown found another partial skeleton in the Hell Creek Formation in Montana in 1902, comprising approximately 34 fossilized bones.[33] Writing at the time Brown said "Quarry No. 1 contains the femur, pubes, humerus, three vertebrae and two undetermined bones of a large Carnivorous Dinosaur not described by Marsh.... I have never seen anything like it from the Cretaceous".[34] Henry Fairfield Osborn, president of the American Museum of Natural History, named the second skeleton Tyrannosaurus rex in 1905. The generic name is derived from the Greek words τύραννος (tyrannos, meaning "tyrant") and σαῦρος (sauros, meaning "lizard"). Osborn used the Latin word rex, meaning "king", for the specific name. The full binomial therefore translates to "tyrant lizard the king" or "King Tyrant Lizard", emphasizing the animal's size and perceived dominance over other species of the time. Osborn named the other specimen Dynamosaurus imperiosus in a paper in 1905. In 1906, Osborn recognized that the two skeletons were from the same species and selected Tyrannosaurus as the preferred name.

Type specimen of Dynamosaurus imperiosus The original Dynamosaurus material resides in the collections of the Natural History Museum, London. In 1941, the T. rex type specimen was sold to the Carnegie Museum of Natural History in Pittsburgh, Pennsylvania, for $7,000. Dynamosaurus would later be honored by the 2018 description of another species of tyrannosaurid by Andrew McDonald and colleagues, Dynamoterror dynastes, whose name was chosen in reference to the 1905 name, as it had been a "childhood favorite" of McDonald's.

From the 1910s through until the end of the 1950s Barnum's discoveries remained the only specimens of Tyrannosaurus, as the Great depression and wars kept many paleontologists out of the field.

         Resurgent interest

Sue specimen, Field Museum of Natural History, Chicago Beginning in the 1960s, there was renewed interest in Tyrannosaurus, resulting in recovery of 42 skeletons from Eastern North America.[26] In 1967, Dr. William MacMannis located and recovered the skeleton named "MOR 008", which is 15% complete by bone count and has a skull cast displayed at the Black Hills Museum of Natural History.[26] In the 1990s decade were numerous discoveries, with nearly twice as many finds as in all previous years, including two of the most complete skeletons found to date: Sue and Stan.

Sue Hendrickson, an amateur paleontologist, discovered the most complete (approximately 85%) and largest Tyrannosaurus skeleton in the Hell Creek Formation on August 12, 1990. The specimen Sue, named after the discoverer, was the object of a legal battle over its ownership. In 1997, the litigation was settled in favor of Maurice Williams, the original land owner. The fossil collection was purchased by the Field Museum of Natural History at auction for $7.6 million, making it the most expensive dinosaur skeleton to date. From 1998 to 1999, Field Museum of Natural History staff spent over 25,000 hours taking the rock off the bones. The bones were then shipped to New Jersey where the mount was constructed, then shipped with the bones back to Chicago for the final assembly. The mounted skeleton opened to the public on May 17, 2000 in the Field Museum of Natural History. A study of this specimen's fossilized bones showed that Sue reached full size at age 19 and died at age 28 years, the longest estimated life of any tyrannosaur known.

Skeleton of Bucky and cast of Stan, at the Children's Museum of Indianapolis Another Tyrannosaurus, nicknamed Stan, in honor of amateur paleontologist Stan Sacrison, was recovered from the Hell Creek Formation in 1992. Stan is the second most complete skeleton found, with 199 bones recovered representing 70% of the total. This tyrannosaur also had many bone pathologies, including broken and healed ribs, a broken (and healed) neck, and a substantial hole in the back of its head, about the size of a Tyrannosaurus tooth.

The specimens "Sue", AMNH 5027, "Stan", and "Jane", to scale with a human. In the summer of 2000, Jack Horner discovered five Tyrannosaurus skeletons near the Fort Peck Reservoir. In 2001, a 50% complete skeleton of a juvenile Tyrannosaurus was discovered in the Hell Creek Formation by a crew from the Burpee Museum of Natural History. Dubbed Jane, the find was thought to be the first known skeleton of a pygmy tyrannosaurid, Nanotyrannus, but subsequent research revealed that it is more likely a juvenile Tyrannosaurus, and the most complete juvenile example known;[43] Jane is exhibited at the Burpee Museum of Natural History.[44] In 2002, a skeleton named Wyrex, discovered by amateur collectors Dan Wells and Don Wyrick, had 114 bones and was 38% complete. The dig was concluded over 3 weeks in 2004 by the Black Hills Institute with the first live online Tyrannosaurus excavation providing daily reports, photos, and video.

In 2006, Montana State University revealed that it possessed the largest Tyrannosaurus skull yet discovered (from a specimen named MOR 008), measuring 5 feet (152 cm) long. Subsequent comparisons of heads indicated that the longest was 136.5 centimetres (53.7 in) (from specimen LACM 23844) and the widest head was 90.2 centimetres (35.5 in) (from Sue).


Tyrannosaurus is the type genus of the superfamily Tyrannosauroidea, the family Tyrannosauridae, and the subfamily Tyrannosaurinae; in other words it is the standard by which paleontologists decide whether to include other species in the same group. Other members of the tyrannosaurine subfamily include the North American Daspletosaurus and the Asian Tarbosaurus,[47][48] both of which have occasionally been synonymized with Tyrannosaurus.[49] Tyrannosaurids were once commonly thought to be descendants of earlier large theropods such as megalosaurs and carnosaurs, although more recently they were reclassified with the generally smaller coelurosaurs.[19]

Diagram showing the differences between a generalized Tarbosaurus (A) and Tyrannosaurus (B) skull In 1955, Soviet paleontologist Evgeny Maleev named a new species, Tyrannosaurus bataar, from Mongolia.[50] By 1965, this species had been renamed Tarbosaurus bataar.[51] Despite the renaming, many phylogenetic analyses have found Tarbosaurus bataar to be the sister taxon of Tyrannosaurus rex,[48] and it has often been considered an Asian species of Tyrannosaurus.[19][52][53] A recent redescription of the skull of Tarbosaurus bataar has shown that it was much narrower than that of Tyrannosaurus rex and that during a bite, the distribution of stress in the skull would have been very different, closer to that of Alioramus, another Asian tyrannosaur.[54] A related cladistic analysis found that Alioramus, not Tyrannosaurus, was the sister taxon of Tarbosaurus, which, if true, would suggest that Tarbosaurus and Tyrannosaurus should remain separate.[47] The discovery and description of Qianzhousaurus in 2014, would disprove this and reveal that Alioramus belonged to the clade Alioramini.[55][56] The discovery of the tyrannosaurid Lythronax further indicates that Tarbosaurus and Tyrannosaurus are closely related, forming a clade with fellow Asian tyrannosaurid Zhuchengtyrannus, with Lythronax being their sister taxon.[57][58] A further study from 2016 by Steve Brusatte, Thomas Carr et al., also indicates Tyrannosaurus may have been an immigrant from Asia, as well as a possible descendant of Tarbosaurus. The study further indicates the possibility that Tyrannosaurus may have driven other tyrannosaurids that were native to North America extinct through competition.[59] Other finds in 2006 indicate giant tyrannosaurs may have been present in North America as early as 75 million years ago. Whether or not this specimen belongs to Tyrannosaurus rex, a new species of Tyrannosaurus, or a new genus entirely is still unknown.[60]

Other tyrannosaurid fossils found in the same formations as Tyrannosaurus rex were originally classified as separate taxa, including Aublysodon and Albertosaurus megagracilis,[61] the latter being named Dinotyrannus megagracilis in 1995.[62] These fossils are now universally considered to belong to juvenile Tyrannosaurus rex.[63] A small but nearly complete skull from Montana, 60 centimeters (2.0 ft) long, may be an exception. This skull was originally classified as a species of Gorgosaurus (G. lancensis) by Charles W. Gilmore in 1946,[64] but was later referred to a new genus, Nanotyrannus.[65] Opinions remain divided on the validity of N. lancensis. Many paleontologists consider the skull to belong to a juvenile Tyrannosaurus rex.[66] There are minor differences between the two species, including the higher number of teeth in N. lancensis, which lead some scientists to recommend keeping the two genera separate until further research or discoveries clarify the situation.[48][67]

       Feeding strategies

Main article: Feeding behavior of Tyrannosaurus

Tyrannosaurus tooth marks on bones of various herbivorous dinosaurs Most paleontologists accept that Tyrannosaurus was both an active predator and a scavenger like most large carnivores.[124] By far the largest carnivore in its environment, Tyrannosaurus rex was most likely an apex predator, preying upon hadrosaurs, armored herbivores like ceratopsians and ankylosaurs, and possibly sauropods.[125] A study in 2012 by Karl Bates and Peter Falkingham found that Tyrannosaurus had the most powerful bite of any terrestrial animal that has ever lived, finding an adult Tyrannosaurus could have exerted 35,000 to 57,000 N (7,868 to 12,814 lbf) of force in the back teeth.[126][127][128] Even higher estimates were made by Mason B. Meers in 2003.[17] This allowed it to crush bones during repetitive biting and fully consume the carcasses of large dinosaurs.[46] Stephan Lautenschlager and colleagues calculated that Tyrannosaurus was capable of a maximum jaw gape of around 80 degrees, a necessary adaptation for a wide range of jaw angles to power the creature's strong bite.[129][130]

A debate exists about whether Tyrannosaurus was a predator or a pure scavenger; the debate was assessed in a 1917 study by Lambe which argued Tyrannosaurus was a pure scavenger because the Gorgosaurus teeth showed hardly any wear.[131] This argument may not be valid because theropods replaced their teeth quite rapidly. Ever since the first discovery of Tyrannosaurus most scientists have speculated that it was a predator; like modern large predators it would readily scavenge or steal another predator's kill if it had the opportunity.[132]

Paleontologist Jack Horner has been a major proponent of the view that Tyrannosaurus was not a predator at all but instead was exclusively a scavenger.[86][133][134] He has put forward arguments in the popular literature to support the pure scavenger hypothesis:

Tyrannosaur arms are short when compared to other known predators. Horner argues that the arms were too short to make the necessary gripping force to hold on to prey.[135] Tyrannosaurs had large olfactory bulbs and olfactory nerves (relative to their brain size). These suggest a highly developed sense of smell which could sniff out carcasses over great distances, as modern vultures do. Research on the olfactory bulbs of dinosaurs has shown that Tyrannosaurus had the most highly developed sense of smell of 21 sampled dinosaurs.[122] Tyrannosaur teeth could crush bone, and therefore could extract as much food (bone marrow) as possible from carcass remnants, usually the least nutritious parts. Karen Chin and colleagues have found bone fragments in coprolites (fossilized feces) that they attribute to tyrannosaurs, but point out that a tyrannosaur's teeth were not well adapted to systematically chewing bone like hyenas do to extract marrow.[136] Since at least some of Tyrannosaurus's potential prey could move quickly, evidence that it walked instead of ran could indicate that it was a scavenger.[133] On the other hand, recent analyses suggest that Tyrannosaurus, while slower than large modern terrestrial predators, may well have been fast enough to prey on large hadrosaurs and ceratopsians.[114][109] Other evidence suggests hunting behavior in Tyrannosaurus. The eye sockets of tyrannosaurs are positioned so that the eyes would point forward, giving them binocular vision slightly better than that of modern hawks. It is not obvious why natural selection would have favored this long-term trend if tyrannosaurs had been pure scavengers, which would not have needed the advanced depth perception that stereoscopic vision provides.[14][15] In modern animals, binocular vision is found mainly in predators.

The damage to the tail vertebrae of this Edmontosaurus annectens skeleton (on display at the Denver Museum of Nature and Science) indicates that it may have been bitten by a Tyrannosaurus A skeleton of the hadrosaurid Edmontosaurus annectens has been described from Montana with healed tyrannosaur-inflicted damage on its tail vertebrae. The fact that the damage seems to have healed suggests that the Edmontosaurus survived a tyrannosaur's attack on a living target, i.e. the tyrannosaur had attempted active predation.[137] There is also evidence for an aggressive interaction between a Triceratops and a Tyrannosaurus in the form of partially healed tyrannosaur tooth marks on a Triceratops brow horn and squamosal (a bone of the neck frill); the bitten horn is also broken, with new bone growth after the break. It is not known what the exact nature of the interaction was, though: either animal could have been the aggressor.[138] Since the Triceratops wounds healed, it is most likely that the Triceratops survived the encounter and managed to overcome the Tyrannosaurus. In a battle against a bull Triceratops, the Triceratops would likely defend itself by inflicting fatal wounds to the Tyrannosaurus using its sharp horns.[139] Studies of Sue found a broken and healed fibula and tail vertebrae, scarred facial bones and a tooth from another Tyrannosaurus embedded in a neck vertebra, providing evidence for aggressive behavior.[140]

Two teeth from the lower jaw of specimen MOR 1125, "B-rex", showing the variation in tooth size within an individual Tyrannosaurus may have had infectious saliva used to kill its prey, as proposed by William Abler in 1992. Abler observed that the serrations (tiny protuberances) on the cutting edges of the teeth are closely spaced, enclosing little chambers. These chambers might have trapped pieces of carcass with bacteria, giving Tyrannosaurus a deadly, infectious bite much like the Komodo dragon was thought to have.[141][142] Jack Horner and Don Lessem, in a 1993 popular book, questioned Abler's hypothesis, arguing that Tyrannosaurus's tooth serrations as more like cubes in shape than the serrations on a Komodo monitor's teeth, which are rounded.[86]:214–215

Tyrannosaurus, and most other theropods, probably primarily processed carcasses with lateral shakes of the head, like crocodilians. The head was not as maneuverable as the skulls of allosauroids, due to flat joints of the neck vertebrae.[143]